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A “best-in-class” systemic biomarker predictor of 
clinically relevant knee osteoarthritis structural and 
pain progression 
Kaile Zhou1,2, Yi-Ju Li1,2, Erik J. Soderblom3, Alexander Reed1, Vaibhav Jain1, Shuming Sun1,  
M. Arthur Moseley3, Virginia Byers Kraus1,4* 

We aimed to identify markers in blood (serum) to predict clinically relevant knee osteoarthritis (OA) progression 
defined as the combination of both joint structure and pain worsening over 48 months. A set of 15 serum pro-
teomic markers corresponding to 13 total proteins reached an area under the receiver operating characteristic 
curve (AUC) of 73% for distinguishing progressors from nonprogressors in a cohort of 596 individuals with knee 
OA. Prediction based on these blood markers was far better than traditional prediction based on baseline struc-
tural OA and pain severity (59%) or the current “best-in-class” biomarker for predicting OA progression, urinary 
carboxyl-terminal cross-linked telopeptide of type II collagen (58%). The generalizability of the marker set was 
confirmed in a second cohort of 86 individuals that yielded an AUC of 70% for distinguishing joint structural 
progressors. Blood is a readily accessible biospecimen whose analysis for these biomarkers could facilitate iden-
tification of individuals for clinical trial enrollment and those most in need of treatment. 
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INTRODUCTION 
Osteoarthritis (OA), the most common joint disease, is a leading 
cause of disability in the United States and worldwide (1). A cure 
for OA remains elusive, and its management is largely palliative. 
This is mainly due to two major obstacles: inability to detect OA 
sufficiently early, before the onset of irreversible signs and recalci-
trant symptoms; and inability to reliably identify individuals at high 
risk of OA progression, resulting in a high type II error rate, i.e., 
false-negative OA trials, due to inability to observe a treatment 
effect on a structural OA end point, such as a knee x-ray, that can 
only worsen but not improve in a cohort whose structural OA is 
relatively stable. Measures traditionally used to predict OA progres-
sion, such as age, sex, body mass index (BMI), and radiographic se-
verity of OA, are minimally prognostic of structural worsening (2– 
4). The use of biomarkers in drug development increases by three-
fold the chance of successfully transitioning a drug from phase 1 to 
U.S. Food and Drug Administration approval (from 8 to 26%) (5). 
Thus, there is a strong need to identify OA biomarkers, particularly 
prognostic biomarkers, to facilitate means of identifying individuals 
likely to have OA progression during the study period and thereby 
enhance the success of OA clinical trials to bring to fruition the 
dream of disease modifying drugs for clinical use in OA. 

Currently, however, available OA-related biomarkers are for re-
search use only, and there are no blood-based biomarkers that are 
strongly predictive of OA progression. Moreover, the “chicken-and- 
egg” dilemma currently challenges the field; biomarkers are needed 
to enhance the success of trials, but qualification of biomarkers 
within successful trials is required to identify the best tools for dif-
ferentiating specific disease phenotypes and potential responders to 
a treatment. Therefore, it is of great importance to be able to qualify 

biomarkers in the context of specific and clear phenotypes. In this 
work, we focus on the important unmet need of objectively identi-
fying individuals at high risk of knee OA progression based on a 
user-friendly biospecimen, blood (serum), readily obtained in a 
clinical or trial setting. 

Using a systematic, unbiased, and iterative approach based on 
extensive discovery proteomic studies in synovial fluid, urine, and 
serum from knee OA radiographic progressors and nonprogressors, 
we created a targeted multiple reaction monitoring (MRM) proteo-
mic panel to predict radiographic knee OA progression by ultraper-
formance liquid chromatography–tandem mass spectrometry 
(UPLC-MS/MS) MRM analysis of serum samples (6). Our 
primary goal in this study was to evaluate the capability of this 
serum panel to predict clinically relevant knee OA progression (ra-
diographic and pain worsening). We applied this MRM proteomic 
biomarker panel to the prediction of knee OA progression in the 
Foundation for the National Institutes of Health (FNIH) cohort, 
with further validation in the Biomarker Factory (BMF) cohort. 
The FNIH cohort was profiled previously for 18 commercially avail-
able enzyme-linked immunosorbent assay–based biomarkers (11 
serum and 7 urinary) that were originally selected on the basis of 
existing evidence for their ability to predict OA progression (7, 8). 
Among these, urinary C-terminal cross-linked telopeptide of type II 
collagen (uCTXII) was the strongest prognostic biomarker of clin-
ically relevant OA progression (8); uCTXII thereby provided a 
“best-in-class” reference against which we could evaluate the perfor-
mance of our final serum proteomic biomarker sets. Through eval-
uation of their gene expression patterns in human knee OA 
articular chondrocytes and synoviocytes, we also explored the po-
tential joint tissue origins of the serum proteomic biomarkers that 
were selected for inclusion in the final predictive biomarker sets. 
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RESULTS 
FNIH cohort 
In total, we quantitatively measured 177 peptides (101 proteins); the 
final analyses consisted of 107 peptides from 64 proteins that passed 
the quality control (QC) measures (table S1). We excluded a total of 
four samples: One was exhausted in laboratory preparation, two 
were outliers, and one had a missing data rate above 15%; this re-
sulted in 596 FNIH study participants in the final analysis dataset 
with a mean age of 61.6 ± 8.9 years, a mean BMI of 30.7 ± 4.8 kg/m2, 
and 58.7% female (Fig. 1). At baseline, most participants had mod-
erate to severe radiographic knee OA based on Kellgren-Lawrence 
(K/L) grades, mean medial minimum joint space width (JSW) re-
flecting degree of cartilage loss, and mean Western Ontario and 
McMaster Universities Osteoarthritis Index (WOMAC) pain 
scores (Table 1). Most participants (70.5%) had no previous 
history of pain medication use. We defined four OA progressor 
groups based on the changes from baseline of radiographic joint 
space loss (JSL), which reflects cartilage degeneration, and/or 
WOMAC pain scores, resulting in 192 JSL and pain progressors, 
103 JSL-only progressors, 102 pain-only progressors, and 199 JSL 
and pain nonprogressors (Table 1). 

Elastic net feature selection 
Elastic net regression along with bootstrapping was applied as the 
variable selection method to account for correlated biomarkers. 
With bootstrapped elastic net selection, the top 30 biomarkers 
with highest selection frequencies were defined as the “stable” set 
for each model outcome (table S2). Backward elimination was 
applied to each stable set to reduce prediction bias (Fig. 2), resulting 
in four “essential” biomarker sets for distinguishing the OA groups 
(table S2) as follows: 15 biomarkers for JSL and pain progressor 
versus composite comparator group (defined as the combined JSL 
and pain nonprogressor, JSL-only progressor, and pain-only pro-
gressor groups), 13 biomarkers for JSL and pain progressor versus 

the JSL and pain nonprogressor group, 11 biomarkers for JSL pro-
gressor versus the JSL and pain nonprogressor group, and 10 bio-
markers for pain progressor versus the JSL and pain nonprogressor 
group. The summary statistics of the essential biomarkers and clin-
ical covariates in knee OA progressor groups are provided in table 
S3. A total of 13 proteins were consistently selected in all models 
(Fig. 3A). Three proteins, represented by eight peptides (whose 
amino acid locations are indicated in subscripts) were selected for 
inclusion in all four of the essential biomarker sets, demonstrating 
their importance as prognostic indicators of knee OA progression, 
including cartilage acidic protein 1 [CRAC1(101–108) and 
CRAC1(170–178) peptides, both predicting increased risk], comple-
ment C1r subcomponent [the C1R(683–689) peptide predicting 
reduced risk], and vitamin D binding protein [VTDB(95–114), 
VTDB(128–149), and VTDB(371–388) predicting increased risk and 
VTDB(346–352) and VTDB(364–370) predicting reduced risk] 
(Fig. 3B). Other commonly selected peptides included CD44(30– 
38), dopamine β-hydroxylase [DOPO(585–602)], kininogen-1 
[KNG1(479–496)], phosphatidylinositol glycan–specific phospholi-
pase [PHLD(800–808)], retinol-binding protein 4 [RET4(185–195)], 
thrombospondin 1 [TSP1(217–228)], and protein Z–dependent prote-
ase inhibitor [ZPI(438–444)]. 

Model evaluation 
Clinical covariates meeting P < 0.15 in the univariate logistic anal-
ysis were included in the multivariable logistic regression models 
for different comparisons (table S4): baseline WOMAC pain score 
and K/L grade for analysis of JSL and pain progressors versus com-
posite comparators; sex, baseline K/L grade, and WOMAC pain 
score for analysis of JSL and pain progressors versus nonprogressors 
(neither JSL nor pain progression); sex and baseline K/L grade for 
analysis of JSL progressors versus nonprogressors; and baseline 
WOMAC pain score for pain progressors versus nonprogressors. 
Bootstrapped areas under the receiver operating characteristic 

Fig. 1. Screening, classification, and analysis of the FNIH600 cohort. *Magnetic resonance imaging (MRI) artifact, knee positioning exclusions; **frequency matching 
for 15 combinations of K/L grades by BMI strata, with random selection. 
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Table 1. Baseline characteristics of the FNIH and BMF cohorts [mean (SD) or n (%)]. NA, not applicable.   

FNIH BMF 

Characteristic JSL and pain 
progressor 

JSL 
progressor 

Pain 
progressor 

Nonprogressor Total JSL 
progressor 

Nonprogressor Total    

(n = 192) (n = 103) (n = 102) (n = 199) (n = 596) (n = 37) (n = 49) (n = 86) 

BMI 30.71 (4.77) 30.72 (4.66) 31.08 (5.02) 30.47 (4.73) 30.70 (4.80) 29.6 (5.4) 28.7 (5.0) 29.1 (5.1) 

Age 62.08 (8.81) 63.14 (8.35) 59.32 (8.64) 61.45 (9.15) 61.60 (8.90) 65.0 (10.7) 66.4 (9.7) 65.8 
(10.1) 

Sex                  

Female 108 (56.2%) 46 (44.7%) 67 (65.7%) 129 (64.8%) 350 (58.7%) 29 (78.4%) 42 (85.7%) 71 
(82.6%)  

Male 84 (43.8%) 57 (55.3%) 35 (34.3%) 70 (35.2%) 246 (41.3%) 8 (21.6%) 7 (14.3%) 15 
(17.4%) 

Race                  

Asian 2 (1.0%) 0 (0.0%) 0 (0.0%) 3 (1.5%) 5 (0.8%) 0 (0%) 0 (0%) 0 (0%)  

Black or African 
American 

32 (16.7%) 9 (8.7%) 28 (27.5%) 39 (19.6%) 108 (18.1%) 1 (2.7%) 0 (0%) 1 (1.2%)  

Other non-White 5 (2.6%) 3 (2.9%) 1 (1.0%) 2 (1.0%) 11 (1.8%) 0 (0%) 1 (2.0%) 1 (1.2%)  

White or 
Caucasian 

153 (79.7%) 91 (88.3%) 73 (71.6%) 155 (77.9%) 472 (79.2%) 36 (97.3%) 48 (98.0%) 84/ 
86 

(97.7%) 

WOMAC pain* 10 (12.9) 16.5 (19.9) 9.7 (13.4) 13.0 (16.2) 12.0 (15.5) 26.5 (17.6) 26.2 (21.2) 26.3 
(19.7) 

K/L grade                  

1 24 (12.5%) 14 (13.6%) 13 (12.7%) 24 (12.1%) 75 (12.6%) 14 (37.8%) 22 (44.9%) 36 
(41.9%)  

2 83 (43.2%) 47 (45.6%) 60 (58.8%) 113 (56.8%) 303 (50.8%) 7 (18.9%) 8 (16.3%) 15 
(17.4%)  

3 85 (44.3%) 42 (40.8%) 29 (28.4%) 62 (31.2%) 218 (36.6%) 16 (43.2%) 19 (38.8%) 35 
(40.7%) 

JSW (mm) 3.79 (1.39) 3.77 (1.19) 3.92 (1.01) 3.86 (1.01) 3.80 (1.20) NA NA NA 

JSN                  

0 NA NA NA NA NA 8/37 (21.6%) 15/49 (30.6%) 23/ 
86 

(26.7%)  

1 NA NA NA NA NA 15/ 
37 (40.5%) 

14/49 (28.6%) 29/ 
86 

(33.7%)  

2 NA NA NA NA NA 13/ 
37 (35.1%) 

18/49 (36.7%) 31/ 
86 

(36.0%)  

3 NA NA NA NA NA 1/37 (2.7%) 1/49 (2.0%) 2/ 
86 (2.3%)  

4 NA NA NA NA NA 0/37 (0%) 1/49 (2.0%) 1/ 
86 (1.2%) 

Pain medication 62/192 (32.3%) 22/ 
103 (21.4%) 

37/ 
102 (36.3%) 

55/199 (27.6%) 176/ 
596 (29.5%) 

NA NA NA 

*WOMAC pain score normalized on a 0 to 100 scale.   
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curve (AUCs; Table 2) were estimated for various models with dif-
ferent combinations of clinical covariates and biomarkers. Clinical 
covariates, uCTXII, and α-isomerized version of urinary C-terminal 
crosslinked telopeptide type I collagen (uCTXIα) each showed 
limited ability to distinguish progressors from nonprogressors 
(best average AUCs of 0.601, 0.608, and 0.577, respectively), while 
models with the essential biomarker sets only yielded much higher 
AUCs: 0.740 for JSL and pain progressor versus nonprogressor, 
0.728 for JSL and pain progressor versus composite comparator, 
0.698 for JSL progressor versus nonprogressor, and 0.673 for pain 
progressor versus nonprogressor. Prediction of clinically relevant 
progression (JSL and pain progression) was somewhat stronger 
when the comparator group was nonprogressors (AUC of 0.740) 
as opposed to the composite comparator (AUC of 0.728) that in-
cluded 50% progressors (JSL-only progressors and pain-only pro-
gressors) and 50% nonprogressors. The tails of the AUC 95% 
confidence intervals (CIs) overlapped for uCTXII versus the essen-
tial biomarker for the comparisons of JSL progressors versus JSL 
and pain nonprogressors and pain progressors versus JSL and 
pain nonprogressors; however, for the primary comparisons of clin-
ically relevant progressors (JSL and pain progressor versus compos-
ite comparator and JSL and pain progressor versus JSL and pain 
nonprogressor), there was no overlap of 95% CIs, suggesting that 
the prediction of clinically relevant progression (JSL and pain 

progression) by essential biomarkers compared to uCTXII was 
somewhat stronger than the essential biomarker prediction of 
JSL-only or pain-only progression. 

Models with the stable biomarker sets exhibited greater AUCs 
(by 0.18 to 0.40 U) than those with essential biomarkers 
(Table 2); the differences were statistically significant as demonstrat-
ed by log likelihood ratio tests for only one of the outcomes (JSL and 
pain progressor versus composite comparator, P = 0.021) (Table 3). 
This indicated that backward elimination was generally useful for 
reducing the number of peptide biomarkers of the final models. 
Adding the covariates to either the essential or stable biomarker 
sets significantly enhanced discriminatory capacity with AUC in-
creases ranging from 0.05 to 0.20 U (average of 0.15 U) (Tables 2 
and 3). Adding uCTXII or uCTXII with covariates to either the es-
sential or stable biomarker sets significantly enhanced the discrim-
inatory capacity with AUC increases ranging from 0.05 to 0.35 U 
(average of 0.18 U) (Table 2). The addition of uCTXIα did not 
enhance the discriminatory capacity of any model (Tables 2 and 
3). Overall, the highest AUC (0.794; 95% CI, 0.766 to 0.794) was 
achieved for the discrimination of JSL and pain progressor versus 
JSL and pain nonprogressor using the stable biomarker set, 
uCTXII and covariates in combination. Sensitivity analysis of the 
essential biomarker set performance, excluding the 218 participants 
with baseline K/L = 3 OA status, resulted in improved AUCs for all 

Fig. 2. Backward elimination process to yield essential biomarker sets. (A) JSL and pain progressor versus composite comparator (JSL or pain-only progression or 
combined JSL and pain nonprogression), (B) JSL and pain progressor versus nonprogressor, (C) JSL progressor versus nonprogressor, (D) pain progressor versus non-
progressor. The biomarkers in the stable sets were sorted by the area under the receiver operating characteristic curve (AUC) drop associated with a single biomarker 
removal from the model. Certain rules were applied to determine the stop point (red dot) as described in the methods. The AUC of each model was calculated as the 
average value of 10 imputed datasets. boot.ave (left y axis), the average AUC when fitting on the bootstrapping samples; orig.ave (left y axis), the average AUC of fitting on 
the original datasets; bias.ave (right y axis), the average bias between original AUC and bootstrapping AUC. Each peptide is defined (full name and sequence) in table S1. 
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outcomes with increases in AUCs by 0.01 to 0.028 U (table S5); this 
suggests that the essential biomarker sets may be even better dis-
criminators of knee OA progressors in “earlier” (baseline K/L = 1 
to 2) stages of radiographic OA. 

As demonstrated by the 95% CIs of the odds ratios (ORs) in mul-
tivariable models that included the full set of essential biomarkers 
(Fig. 4), most peptide biomarkers in the essential sets were statisti-
cally significant predictors of OA progression. For each essential set 
of biomarkers, about half of all peptide biomarkers predicted in-
creased risk, while the other half predicted decreased risk of pro-
gression. The highest AUC, using essential biomarkers only, 
distinguished the clinically relevant progressors from JSL nonprog-
ressors with an AUC of 0.740 based on 13 peptides from 13 distinct 
proteins. The Youden’s index J statistic for this outcome was 0.395, 
yielding a sensitivity of 80.2% and a specificity of 59.3% with essen-
tial biomarkers only (table S6). 

Prognostic MRM biomarker panel validation in the 
BMF cohort 
The characteristics of the BMF cohort (n = 86, 37 JSL progressors 
and 49 JSL nonprogressors) were comparable to the FNIH cohort 

(Table 1). Among the 11 essential biomarkers selected in the com-
parison of JSL progressor versus JSL nonprogressor in the FNIH 
cohort, the contrast most comparable to the available groups in 
the BMF cohort, VTDB(128–149) and CD14(192–210) were not mea-
sured in the BMF cohort. VTDB(128–149) was strongly correlated 
with four other peptides within the VTDB protein (rs > 0.89); 
VTDB(371–388) with the highest correlation (0.94) was used as an al-
ternative to VTDB(128–149). No replacement peptide was found for 
CD14(192–210) in the BMF cohort; however, in the work by Nockher 
et al. (9), serum CD14 concentrations were correlated positively 
with β2-microglobulin (B2MG) (rs = 0.63, P < 0.0001). Thus, we 
used B2MG, measured in the BMF cohort, as a replacement for 
CD14(192–210). Without clinical covariates, the 11 peptide biomarker 
set was capable of distinguishing JSL progressors from JSL nonprog-
ressors in the BMF cohort (AUC = 0.697). The BMF cohort includ-
ed five families of two individuals each; in sensitivity analysis, we 
randomly removed one individual from each of these families, 
which yielded a similar AUC of 0.688. 

Joint tissue expression of essential biomarkers 
Single-cell RNA sequencing (scRNA-seq) confirmed the joint tissue 
gene expression in OA articular cartilage, OA synovium, or both of 
19 (70%) of the 27 genes corresponding to proteins composed of the 
essential OA progression peptides (Fig. 5A), suggesting that this 
subset of essential biomarkers in the serum could have a potential 
joint tissue origin. Expression in both OA cartilage and synovium 
was found for actin cytoplasmic 2 (ACTG; ACTG1), complement 
C1r subcomponent (C1R; C1R), monocyte differentiation antigen 
CD14 (CD14; CD14), CD44 antigen (CD44; CD44), complement 
factor H (CFAH; CFH), tetranectin (TETN; CLEC3B), cartilage 
acidic protein 1 (CRAC1; CRTAC1), coagulation factor V (FA5; 
F5), proteoglycan 4 (PRG4; PRG4), retinol-binding protein 4 
(RET4; RBP4), plasma protease C1 inhibitor (IC1; SERPING1), 
and thrombospondin-1 (TSP1; THBS1). Low but detectable expres-
sion was found in both tissues for β-Ala-His dipeptidase (CNDP1; 
CNDP1), glycosylphosphatidylinositol-specific phospholipase D1 
(PHLD; GPLD1), hemopexin (HEMO; HPX), heparin cofactor II 
(HEP2; SERPIND1), and sex hormone binding globulin (SHBG; 
SHBG); in cartilage predominantly for α1-antichymotrypsin 
(AACT; SERPINA3); and in synovium predominantly for platelet 
factor 4 (PLF4; PF4). The essential protein sets of all four OA pro-
gression models were described by 12 canonical pathways meeting 
criteria of P < 0.05 [i.e., −log10 (P value) >1.3] including acute phase 
response signaling, liver X receptor/retinoid X receptor (LXR/RXR) 
and farnesoid X receptor (FXR)/RXR activation, complement and 
coagulation systems including both intrinsic and extrinsic pro-
thrombin activation pathways, catecholamine biosynthesis, the 
“neuroprotective role of thimet oligopeptidase (THOP1) in Alz-
heimer’s disease,” actin cytoskeleton signaling, choline biosynthesis 
III, and macrophage migration inhibitory factor (MIF)–mediated 
glucocorticoid regulation (Fig. 5B). Collectively, these pathways 
point to key roles of inflammatory, metabolic, and immune re-
sponses in OA progression. 

DISCUSSION 
Our results verified that a combination of serum peptide biomark-
ers greatly enhanced the accuracy in predicting knee OA progres-
sion over existing methodology that work poorly in knee OA 

Fig. 3. Venn diagram of selected protein biomarkers. (A) Stable biomarker sets 
of the primary and secondary end points. (B) Essential biomarker sets of the 
primary and secondary end points. Proteins in overlapping regions are selected 
in common in corresponding comparison models. prog., progression. 
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prognosis and diagnosis (10, 11) or the current leading systemic bi-
omarker in the field, uCTXII. Based on a serum sample, this prote-
omic panel at baseline predicted clinically relevant progression 
(pain and radiographic knee OA progression) and radiographic 
knee OA progression (independent of any consideration of pain 
status) over the time course of a typical OA clinical trial (2 to 4 
years). Our results are the strongest predictive panel to date for 
OA progression and most excitedly are performed on a patient- 
friendly biofluid, serum, as opposed to requiring synovial fluid. 
On the basis of optimization and evaluation of the smallest essential 
panel for identifying each progressor phenotype, slightly different 
but overlapping sets of peptide biomarkers were identified. Differ-
ences in these sets are not unexpected given the known heterogene-
ity of pain phenotypes and lack of congruence of structural and pain 
features in OA (12). The AUC in the BMF validation cohort dem-
onstrated the robustness of the essential peptide set for radiographic 
OA progression. 

Three proteins, VTDB (five peptides, three indicating increased 
risk and two indicating reduced risk), CRAC1 (two peptides, both 
indicating increased risk), and C1R (one peptide indicating reduced 
risk) were selected as essential biomarkers in all four models, dem-
onstrating their importance as prognostic indicators of knee OA 

progression. VTDB has a multitude of functions. More than 120 
VTDB variants are known, but their health consequences are not 
understood. We did not identify GC (the vitamin-D binding 
protein gene) expression in either OA cartilage or synovium; 
however, VTDB readily penetrates the joint cavity, demonstrated 
by moderately strong correlation (0.6) of serum and synovial fluid 
concentrations, and concentrations in synovial fluid ~50% of serum 
concentrations (13). Therefore, although VTDB originates external 
to joint tissue, it nevertheless reflects processes relevant to OA pa-
thology. As shown here, both CRAC1 (not only greatest in chondro-
cytes from lesioned regions of OA cartilage but also expressed by 
OA synovial cells) and C1R (not only greatest in OA synovial 
cells but also expressed in chondrocytes from OA cartilage) are un-
equivocally expressed in joint tissues. Both of these proteins could 
plausibly play a role in disease pathogenesis in addition to indicat-
ing risk of disease progression; therefore, they might be considered 
as “direct” biomarkers, defined as directly associated with the causal 
pathway of a disease (14). 

In this study, not all VTDB peptides shared the same direction of 
effect on OA progression in multivariable models that included all 
essential biomarkers for an outcome; some were associated with in-
creased risk, while others with decreased risk, suggesting that some 

Table 2. Predictive modeling with AUC and 95% CIs for all models and OA progression outcomes.  

Multivariable model JSL and pain progressor vs. 
composite comparator (192 

vs. 404) 

JSL and pain progressor vs. JSL 
and pain nonprogressor (192 

vs. 199) 

JSL progressor vs.  
JSL and pain 

nonprogressor (295 
vs. 199) 

Pain progressor vs.  
JSL and pain 

nonprogressor (294 
vs. 199)  

Covariates* 0.585 (0.532–0.627) 0.601 (0.534–0.641) 0.596 (0.544–0.637) 0.542 (0.492–0.592) 

uCTXII 0.575 (0.525–0.623) 0.608 (0.552–0.663) 0.594 (0.543–0.645) 0.590 (0.539–0.641) 

uCTXIα 0.564 (0.512–0.613) 0.577 (0.513–0.632) 0.559 (0.503–0.611) 0.559 (0.501–0.611) 

uCTXII + covariates 0.602 (0.545–0.642) 0.641 (0.576–0.684) 0.629 (0.570–0.671) 0.600 (0.544–0.645) 

Essential biomarker 
set only† 

0.728 (0.672–0.752) 0.740 (0.669–0.772) 0.698 (0.631–0.735) 0.673 (0.608–0.705) 

Essential biomarker set + 
covariates 

0.746 (0.693–0.767) 0.752 (0.696–0.775) 0.718 (0.654–0.747) 0.685 (0.622–0.717) 

Essential biomarker set 
+ uCTXII 

0.733 (0.682–0.757) 0.753 (0.687–0.784) 0.712 (0.650–0.743) 0.692 (0.633–0.721) 

Essential biomarker set 
+ uCTXIα 

0.729 (0.673–0.753) 0.738 (0.667–0.768) 0.698 (0.632–0.730) 0.676 (0.620–0.704) 

Essential biomarker set + 
uCTXII + covariates 

0.743 (0.694–0.766) 0.760 (0.706–0.785) 0.728 (0.670–0.755) 0.702 (0.636–0.731) 

Stable biomarker set only 0.746 (0.715–0.753) 0.763 (0.730–0.765) 0.726 (0.692–0.731) 0.713 (0.688–0.714) 

Stable biomarker set + 
covariates 

0.762 (0.729–0.767) 0.779 (0.752–0.777) 0.745 (0.712–0.749) 0.718 (0.689–0.720) 

Stable biomarker set 
+ uCTXII 

0.752 (0.719–0.759) 0.775 (0.735–0.778) 0.736 (0.703–0.740) 0.727 (0.699–0.727) 

Stable biomarker set 
+ uCTXIα 

0.747 (0.715–0.754) 0.763 (0.732–0.765) 0.725 (0.692–0.726) 0.716 (0.685–0.714) 

Stable biomarker set + 
uCTXII + covariates 

0.771 (0.739–0.777) 0.794 (0.766–0.794) 0.761 (0.731–0.764) 0.732 (0.704–0.734) 

*Selected clinical covariates by univariate analyses: (i) JSL and pain progressor versus composite comparator: K/L grade and WOMAC pain score; (ii) JSL and pain 
progressor versus JSL and pain nonprogressor: sex, K/L grade, and WOMAC pain score; (iii) JSL progressor versus JSL and pain nonprogressor: sex, and K/L grade; 
(iv) pain progressor versus JSL and pain nonprogressor: WOMAC pain score.  †The essential (final) biomarker sets consisted of selected biomarkers after stability 
screening and backward elimination. The stable biomarker set refers to those initially selected by elastic net.   
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Table 3. Log likelihood ratio test to compare essential and stable 
biomarkers sets. The essential biomarker sets consisted of selected 
biomarkers after stability screening and backward elimination. The stable 
biomarker set refers to those initially selected by elastic net. Covariates 
used in the analyses were as follows: baseline WOMAC pain score and K/L 
grade for analysis of JSL and pain progression versus composite 
comparators; sex, baseline K/L grade and WOMAC pain score for analysis of 
JSL and pain progressor versus JSL and pain nonprogressor; sex and 
baseline K/L grade for analysis of JSL progressor versus JSL and pain 
nonprogressor; and baseline WOMAC pain score for pain progressor versus 
JSL and pain nonprogressor. 

Model −2log 
L 

Model 
comparison 

2∆ln 
L (df) 

P 
value  

JSL & Pain progressor vs. 
composite comparator       

A: Essential 
biomarker set 

667.84       

B: Essential biomarker 
set and covariates 

652.11 B vs. A 15.73 
(3) 

0.001 

C: Essential biomarker 
set and uCTXII 

662.74 C vs. A 5.10 (1) 0.024 

D: Essential 
biomarker set 
and uCTXIα 

666.23 D vs. A 1.62 (1) 0.204 

E: Essential biomarker 
set and uCTXII and 
covariates 

646.46 E vs. A 21.38 
(4) 

<0.001 

F: Stable 
biomarker set 

639.82 F vs. A 28.03 
(15) 

0.021 

G: Stable biomarker 
set and covariates 

626.06 G vs. F 13.76 
(3) 

0.003 

H: Stable biomarker 
set and uCTXII 

634.19 H vs. F 5.63 (1) 0.018 

I: Stable biomarker 
set and uCTXIα 

638.14 I vs. F 1.68 (1) 0.195 

J: Stable biomarker 
set and uCTXII and 
covariates 

620.03 J vs. F 19.79 
(4) 

0.001 

JSL and pain progressor vs. JSL and pain 
nonprogressor     

A: Essential 
biomarker set 

473.51       

B: Essential biomarker 
set and covariates 

457.94 B vs. A 15.57 
(4) 

0.004 

C: Essential biomarker 
set and uCTXII 

463.18 C vs. A 10.33 
(1) 

0.001 

D: Essential 
biomarker set 
and uCTXIα 

472.68 D vs. A 0.83 (1) 0.363 

E: Essential biomarker 
set and uCTXII and 
covariates 

444.00 E vs. A 29.51 
(5) 

<0.001 

F: Stable 
biomarker set 

450.09 F vs. A 23.42 
(17) 

0.136 

G: Stable biomarker 
set and covariates 

435.65 G vs. F 14.44 
(4) 

0.006 

H: Stable biomarker 
set and uCTXII 

439.67 H vs. F 10.42 
(1) 

0.001 

continued on next page 

Model −2log 
L 

Model 
comparison 

2∆ln 
L (df) 

P 
value  

I: Stable biomarker 
set and uCTXIα 

449.58 I vs. F 0.51 (1) 0.477 

J: Stable biomarker 
set and uCTXII and 
covariates 

423.07 J vs. F 27.02 
(5) 

<0.001 

JSL progressor vs. JSL and pain 
nonprogressor       

A: Essential 
biomarker set 

606.43       

B: Essential biomarker 
set and covariates 

592.13 B vs. A 14.30 
(3) 

0.003 

C: Essential biomarker 
set and uCTXII 

595.44 C vs. A 11.00 
(1) 

0.001 

D: Essential 
biomarker set 
and uCTXIα 

605.97 D vs. A 0.46 (1) 0.498 

E: Essential biomarker 
set and uCTXII and 
covariates 

576.36 E vs. A 30.07 
(4) 

<0.001 

F: Stable 
biomarker set 

579.49 F vs. A 26.94 
(19) 

0.106 

G: Stable biomarker 
set and covariates 

565.26 G vs. F 14.24 
(3) 

0.003 

H: Stable biomarker 
set and uCTXII 

571.05 H vs. F 8.44 (1) 0.004 

I: Stable biomarker 
set and uCTXIα 

579.20 I vs. F 0.29 (1) 0.587 

J: Stable biomarker 
set and uCTXII and 
covariates 

552.24 J vs. F 27.25 
(4) 

<0.001 

Pain progressor vs. JSL and 
pain nonprogressor       

A: Essential 
biomarker set 

615.94       

B: Essential biomarker 
set and covariates 

611.45 B vs. A 4.49 (1) 0.034 

C: Essential biomarker 
set and uCTXII 

604.35 C vs. A 11.59 
(1) 

0.001 

D: Essential 
biomarker set 
and uCTXIα 

613.54 D vs. A 2.40 (1) 0.122 

E: Essential biomarker 
set and uCTXII and 
covariates 

598.36 E vs. A 17.58 
(2) 

<0.001 

F: Stable 
biomarker set 

588.42 F vs. A 27.52 
(20) 

0.121 

G: Stable biomarker 
set and covariates 

585.56 G vs. F 2.86 (1) 0.091 

H: Stable biomarker 
set and uCTXII 

577.86 H vs. F 10.55 
(1) 

0.001 

I: Stable biomarker 
set and uCTXIα 

585.83 I vs. F 2.58 (1) 0.108 

J: Stable biomarker 
set and uCTXII and 
covariates 

573.88 J vs. F 14.54 
(2) 

0.001  
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parts of the protein play a compensatory role in disease progression 
and some parts act as coactivators of the immune system. These 
results might be explained on the basis of domain-specific functions 
of VTDB. VTDB has a single binding site for all forms of vitamin D; 
it thereby determines vitamin D bioavailability, creating a reserve by 
which to rapidly replenish the free (active) forms of vitamin D to 
prevent vitamin D deficiency. In mice (15) and in vitro (16), 
vitamin D is anti-inflammatory; moreover, in the observational 
OA initiative (OAI) cohort, vitamin D supplementation over 4 
years was associated with significantly less progression of knee 
joint abnormalities (17). VTDB also scavenges microthrombi- 
forming actin molecules released from necrotic cells after tissue 
injury (18, 19). Together, these results suggest a protective role of 
VTDB in OA. However, VTDB also augments the monocyte and 
neutrophil chemotactic response to the complement anaphylatoxin 
C5a (20). These multitudes of functions of VTDB likely complicate 
the ability to identify clear associations of the whole protein with 
clinical outcomes; in this regard, domain-specific analyses, as pro-
vided here by specific peptide quantification by MS proteomics, 
appear to unmask the functional complexity of this protein in OA 
progression. From a biomarker standpoint, these results suggest 

that epitope-specific measures of circulating VTDB are required 
for optimal OA progression prediction. 

In our study, CRAC1 predicted both structural and OA pain pro-
gression. CRAC1 is a glycosylated extracellular matrix protein that is 
enriched in the interterritorial matrix of the deep zone of articular 
cartilage (21). Our scRNA-seq analysis confirmed the presence of 
CRAC1 in human articular cartilage, consistent with a prior 
murine study (22), its enrichment in lesioned regions as opposed 
to macroscopically normal appearing regions of OA cartilage, and 
expression in OA synovium. The function of CRAC1 in joint tissues 
is not clear, although CRAC1 promotes cell proliferation, migration, 
and extracellular matrix production in primary human fibroblasts 
in vitro (23). We identified two CRAC1 peptides as essential predic-
tors; both were positively associated with OA progression. In a 
recent large study profiling 4792 proteins in plasma, CRAC1 was 
associated with OA pain and was the most strongly associated of 
all the proteins with a diagnosis of OA and prediction both knee 
and hip replacement (24). This study reported that plasma 
CRAC1 concentrations declined after joint replacement (24), con-
sistent with a joint tissue origin of this plasma analyte. In addition, 
in the Rotterdam cohort in models adjusted for age, sex, and BMI, 

Fig. 4. Forest plot and OR estimates for the models with the essential biomarkers. (A) The JSL and pain progressor group compared to the composite comparator 
group defined as the combined JSL and pain nonprogressor, JSL-only progressor, and pain-only progressor groups; (B) the JSL and pain progressor group compared to 
the JSL and pain nonprogressor group; (C) the JSL-only progressor group compared to the JSL and pain nonprogressor group; (D) the pain-only progressor group com-
pared to the JSL and pain nonprogressor group. Parameter estimates of each model were obtained by fitting on 10 imputed data sets. Rubin’s rules were then applied to 
combine the estimates from the repeated complete data analyses. Because the peptide ratios were first standardized by their own SD, the results are presented as the ORs 
for an SD change of the corresponding peptides ratios. With our peptide selection strategy, most of the biomarkers significantly contribute to knee OA progression or 
benign symptoms. 
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serum CRAC1 has been identified as a biomarker of overall radio-
graphic OA severity (hand, hip, and knee OA combined) and knee 
radiographic OA severity and progression (25). Last, in a recent un-
targeted MS study of serum (26), CRAC1, along with fibrillin-1 
(FBN1), and VTDB (all elevated above control) were identified as 
knee OA-related proteins; CRAC1 was the strongest contributor 
to a principal component (PC) discriminating OA from control, 

underscoring its emerging importance as a robust knee OA- 
related biomarker. 

In our study, C1r predicted reduced risk of both OA structural 
(radiographic) and pain progression. C1r is a subunit of the C1 
complex, the first component of the classical pathway of the com-
plement system consisting of C1r, C1q, and C1s. The C1 complex 
plays an important role in the innate immune defense system. Our 

Fig. 5. Joint tissue gene expression profile corresponding to essential biomarkers. (A) Expression level, defined as number of cells expressing the gene (y axis) 
corresponding to the essential biomarker (gene name listed on the x axis above the graphic) in the medial tibial (MT) lesioned knee OA articular knee cartilage, outer 
lateral tibial (OLT) nonlesioned knee OA articular cartilage, and matched knee OA synovium (SY); the data are extracted from a previously described database of scRNA-seq 
data (47). Of the 27 proteins comprising the essential peptides, 19 were found in the transcriptome data and are plotted. (B) Stacked bar plots depict the top ranked 
canonical pathways from ingenuity pathway analysis associated with all four OA progression phenotypic models at P < 0.05 [i.e., −log10 (P value) > 1.3]. prog., progression. 

Zhou et al., Sci. Adv. 9, eabq5095 (2023) 25 January 2023                                                                                                                                                       9 of 14  

S C I E N C E  A D VA N C E S | R E S E A R C H  A R T I C L E  



scRNA-seq analysis confirmed the expression of C1r in OA carti-
lage and synovium. The epitope identified in our study [C1r(683– 
689)] is situated in the light catalytic (B) chain of C1r (spanning 
amino acids 464 to 702) (27) that mediates cleavage and autoactiva-
tion as well as cleavage and activation of C1s in the C1 complement 
complex (28). Our study showed that a higher serum concentration 
of the C1r(683–689) peptide was indicative of a lower risk of OA pro-
gression. To potentially understand this result, it is important to 
recognize that no fragment is released when C1r is cleaved. C1r sub-
sequently cleaves and activates C1s that activates C4 and C2, ulti-
mately resulting in activation of the central complement protein 
C3 (29). The only known protease inhibitor of activated C1r is 
the serpin C1 inhibitor (IC1; alternative names C1INH, C1 esterase 
inhibitor; gene SERPING1) (30), another peptide selected as essen-
tial for predicting reduced risk of OA radiographic progression in 
this study. IC1 forms proteolytically inactive covalent complexes 
with the C1r and C1s proteases (30); this effectively disassembles 
the C1 complex, releasing inactive C1r:IC1 and C1s:IC1 complexes 
(30, 31). Trimer and tetramer complexes containing IC1, C1r, and 
C1s have been identified in serum and synovial fluid of individuals 
with rheumatoid arthritis (RA) (32). On the basis of this informa-
tion, it is plausible that our proteomic analyses detect stable IC1:C1r 
inhibitory complexes, such as identified in individuals with RA 
(32), suggesting that C1 activation is triggered but is checked at 
the C1R stage by IC1, thus inhibiting the further activation of com-
plement components. It has also recently been determined that C1s 
cleaves noncomplement components, such as major histocompati-
bility complex class I molecules, insulin-like growth factor binding 
protein 5, nuclear autoantigens, and the Wnt co-receptor low- 
density lipoprotein receptor–related protein 6 (LRP6). LRP6 cleav-
age by C1s results in activation of Wnt signaling, a pathway involved 
in OA initiation and progression (33). Moreover, IC1 reduces Wnt 
signaling activation (34). This suggests that C1r, by activating C1s, 
and IC1 with its well-defined role in regulating host defense through 
its interaction with the C1 complex also function broadly in tissue 
homeostasis and immune tolerance, thereby providing possible ex-
planations for the observed associations of higher serum concentra-
tions of C1r and IC1 with lower risk of OA progression. 

The biomarker TETN (CLEC3B) was in the stable sets of all four 
models and in the essential set for predicting pain progression; 
genetic variants of CLEC3B are associated with knee OA (35). 
Some biomarker elevations may represent countermeasures of 
disease as opposed to pathological mediators, or may be neoepi-
topes or degradation products that are highly informative but diffi-
cult to understand a priori without a thorough knowledge of their 
biology. For instance, FA5 protein (F5 gene), a blood coagulation 
factor, was in the stable biomarker sets for all four models of OA 
progression, and it was an essential biomarker for clinically relevant 
progression versus JSL (radiographic) nonprogression. Given the 
emerging recognition that components of blood coagulation can 
have prothrombotic and proinflammatory functions independent 
of their hemostatic effects (36), one might expect higher FA5 to 
be a risk marker for OA progression. On the basis of our scRNA- 
seq data, F5 gene expression was higher in the more diseased com-
pared to the less diseased region of cartilage, but higher serum 
FA5(1506–1517) peptide predicted OA nonprogression. FA5 is at the 
heart of the coagulation cascade; FA5(1506–1517) represents an 
epitope that is degraded during FA5 activation by thrombin, a 
protein whose activity is associated with OA (37, 38). Thus, a 

higher blood concentration of FA5(1506–1517) is consistent with 
low thrombin activity and a state of less OA activity, as expected 
for nonprogressors, and consistent with the inverse association of 
this peptide with OA progression. 

There were several limitations of this study. First, unlike the 
usual feature selection methods used in qualification of biomarkers, 
elastic net was used to accommodate a large number of predictors 
(peptides) and the potential correlation among predictors in the 
model. However, elastic net had a disadvantage in this scenario 
that more biomarkers emerged than expected. We found that 10- 
fold cross-validation underestimated AUCs because of the relatively 
small sample size of the validation set. We therefore used bootstrap 
methods to determine the final set of peptides based on those re-
peatedly selected among bootstrapped samples. Second, our valida-
tion cohort BMF was smaller than the discovery cohort, and two of 
the essential biomarkers selected in the FNIH cohort were not pro-
filed. We overcame this limitation by selecting two alternative pep-
tides in BMF known to correlate with the two missing ones. With 
these substitutions, we validated the essential biomarker ability to 
discriminate radiographic progressors from nonprogressors. 

There were also several strengths of this study. We tested a well- 
developed proteomic panel suitable for prediction of OA progres-
sion in serum, a patient friendly biospecimen. Our primary cohort 
(FNIH) was derived from the deeply phenotyped OAI cohort and 
had preexisting data for the major currently used OA-related bio-
markers; these data allowed head to head comparison of the perfor-
mance of our essential peptide sets with the existing best-in-class 
OA-related biomarker, uCTXII. To our knowledge, on the basis 
of the original report of these data (39), CNDP1, VTDB, and 
ACTG were not previously identified as biomarkers of OA. In ad-
dition, we focused on study participants with standard as opposed 
to fast rates of progression that may be more representative of the 
general knee OA patient population. 

In summary, this study successfully detected a combination of 
biomarkers, which effectively discriminated clinically relevant 
knee OA progressors from nonprogressors using a patient-friendly 
biospecimen, serum. Using robust and stringent statistical and pro-
teomic analysis methodology, we identified a set of baseline serum 
biomarkers of participants in the FNIH cohort that were able to 
predict clinically relevant knee OA progression (the combination 
of structural and pain progression) better than the current bestin- 
class OA-related biomarker (uCTXII), and were able to be validated 
in an independent knee OA cohort. These essential biomarker sets 
hold promise as tools for overcoming the chicken-and-egg chal-
lenge in OA, namely, to facilitate enrichment of clinical trial 
cohorts with individuals likely to progress over the time course of 
a typical OA clinical trial (2 to 4 years) and thereby increase the 
chance of trial successes through enhanced statistical powering. 
These results also provide a basis for future development of 
means of identifying individuals most in need of surveillance and 
disease modifying therapies. 

MATERIALS AND METHODS 
Experimental design 
The overall objective of this study was to identify biomarkers related 
to OA knee structural (radiographic) and pain progression using a 
“user-friendly” body fluid, serum. 
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Participants 
The FNIH OA biomarkers consortium cohort 
The FNIH cohort was selected as a nested case-control cohort 
within the OAI dataset to evaluate potential biochemical and mag-
netic resonance imaging (MRI) biomarkers of OA progression in 
the FNIH biomarker consortium project (8, 40). Participants were 
eligible for FNIH cohort inclusion on the basis of K/L (41) grades 1 
to 3 radiographic knee OA at baseline; radiographic JSW and pain 
data from baseline to 48 months; and MRI, serum, and urine 
samples at both baseline and 24 months. The WOMAC-normalized 
pain score (range, 0 to 100) was used to quantify knee OA pain se-
verity. Participants were excluded if they were unable to progress 
(baseline minimal JSW of <1.0 mm or WOMAC score of >91 on 
a 0- to 100-normalized scale), if MRI artifacts were likely to affect 
image analysis, or if the radiographs were of poor quality or malpo-
sitioned. In addition, as previously described (40), this FNIH sub-
sample excluded knees with radiographic and pain progression at 12 
months, those with lateral joint space narrowing (JSN) grade 2 or 3 
at baseline, as well as individuals who underwent total knee or total 
hip replacement between baseline and 24 months. The goal of these 
exclusions was to ensure that selected biomarkers were prognostic 
as opposed to concurrent predictors of OA progression and gener-
ally reflecting progressors with more standard rates of progression. 
Thus, what would be considered “fast progressors” were excluded 
from this FNIH subsample. The sample size of the original case- 
control FNIH cohort (n = 600) was predetermined by the number 
of individuals in the OAI fulfilling the primary case status definition 
with available samples (n = 194) (8). Baseline data included age, 
gender, BMI, race, medial minimum JSW (minJSW), K/L grade, 
WOMAC pain score, and history of knee pain medication use. Suf-
ficient sera for 599 individuals were available to perform proteomic 
analyses for this study; one sample from the JSL and pain progres-
sion group in the original FNIH biomarker study (8) was exhaust-
ed (Fig. 1). 
BMF cohort 
The validation (BMF) cohort included 86 individuals with radio-
graphic knee OA (K/L grade 1 to 3 at baseline), 3- to 4-year 
follow-up radiographic data, and available baseline serum 
samples. BMF knee OA progressors (n = 37) could have hip OA pro-
gression; the nonprogressors (n = 49) were required to have no knee 
and no hip OA progression. Baseline data included age, BMI, 
gender, and K/L grade. 

Outcomes 
Foundation for the National Institutes of Health 
The primary case status classification of participants in the FNIH 
cohort was based on two criteria: knee radiographic JSL progres-
sion, defined as a decrease in a minJSW of ≥0.7 mm from 24 to 
48 months from baseline; and sustained pain worsening, defined 
as a WOMAC pain increase from 24 to 48 months of ≥9 U on a 
normalized 100-U scale, sustained on at least two follow-up visits 
over 60 months from baseline. Both of these criteria are considered 
to be above a minimum clinically important difference as previously 
described (42–44). The primary analysis compared “clinically rele-
vant” knee OA progression (n = 192) defined as JSL and pain pro-
gression over 48 months, to a composite comparator (n = 404 
consisting of individuals with JSL-only progression, pain-only pro-
gression, and JSL or pain nonprogression). The secondary analyses 
compared JSL and pain progression (n = 192), any JSL progression 

(n = 295), and any pain progression (n = 294) to the JSL and pain 
nonprogression group (n = 199). 
Biomarker Factory 
Using a standardized atlas (45), the medial and lateral compart-
ments of the knee were graded for categorical JSN (score, 0 to 3); 
knee radiographic OA progression was defined as an increase in cat-
egorical JSN of at least one unit (JSN of ≥1) over 3 to 4 years. A one- 
grade change in categorical JSN used in this cohort is comparable to 
the radiographic progression measure (JSW of ≥0.7 mm) used in 
the FNIH cohort (46). 

MS analyses 
Nondepleted serum sample preparation and stable isotope– 
labeled peptide spiking 
Nondepleted FNIH cohort samples were thawed before sample 
preparation in 12 partially randomized processing/run blocks. 
Upon thawing, an aliquot was removed and subjected to a Bradford 
assay in duplicate after a 50× dilution into 50 mM ammonium bi-
carbonate. In addition to patient samples, three QC sample types 
were processed: (i) To assess differences in digestion efficiencies 
between sets, a digestion QC standard was created by pooling 
50 μl from the first block (block 1) of 61 samples, which was then 
mixed and subaliquoted (at the intact protein level). All digestion 
QC standards were then frozen. Three random aliquots were 
thawed and digested with each sample block to assess differences 
in digestion efficiency between all blocks. (ii) To be able to 
provide a global reference standard, a nondepleted serum sample 
from Golden West Biologicals was processed and analyzed in singli-
cate for each of the unique batches. (iii) To assess intra/interplate 
variation of the targeted analytes, a sample pool QC (SPQC) 
sample was created from the initial pooled sample (used for diges-
tion controls), digested using the same protocol as the patient 
samples, and then subaliquoted in −80°C. An aliquot was 
removed for each of the plates and run periodically throughout 
the acquisition window with the same LC-MS method as the rest 
of the study. For all sample digestions, 5 μl of each sample was 
removed and diluted 1:40 with a 5.13% deoxycholate (DOC) surfac-
tant such that the starting protein concentration was 1.25 μg/μl. 
Samples were reduced with 10 mM dithiothreitol (DTT) at 80°C 
for 20 min and then alkylated with 20 mM iodoacetate at room tem-
perature for 40 min. To each sample, sequencing grade trypsin was 
added (1:10 enzyme to protein), and samples were digested for 2 
hours at 37°C. Samples were then acidified with 1% trifluoroacetic 
acid and then spun to remove residual DOC before LC-MRM anal-
ysis. Included in the spiking of the DTT reducing agent was a stable 
isotope–labeled (SIL) peptide mixture of 177 C13/N15 R/K/- or L/- 
labeled peptides corresponding to 101 endogenous human proteins. 
This SIL mixture was created using the following protocol: Spike-
Tide TQL SIL peptides were purchased from JPT (Hamburg, 
Germany) (5× 1 nmol of 99.9% C13/N15 lyophilized peptide). Fol-
lowing resolubilization of the JPT SpikeTides in 100 mM ammoni-
um bicarbonate/20% acetonitrile, SpikeTides were digested with 
1:50 sequencing grade trypsin for 18 hours at 37°C to yield the 
final SIL peptide (removal of TQL “tag”). This SIL mixture was 
then added to the DTT reagent used for reduction. Because the 
maximum number of samples processed in any batch was 61 
(based on instrument acquisition time and time of samples sitting 
in autosampler), a multibatch approach in a 96-well plate format 
was deployed. 
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Targeted MRM quantitative analysis of nondepleted 
serum samples 
Quantitative LC-MRM was performed on 1 μg of protein digest 
spiked with 10 fmol of 177 SIL peptides using a nanoACQUITY 
UPLC system (Waters Corp.) coupled to a Waters Xevo TQ-XS 
triple quadrupole mass spectrometer via a nanoelectrospray ioniza-
tion source. Briefly, the sample was first trapped on a Symmetry C18 
300 mm–by–180 mm trapping column [5 μl/min at 99.9/0.1 (v/v) 
water/acetonitrile], after which the analytical separation was per-
formed using a 1.8-μm Acquity HSS T3 C18 75 μm–by–150 mm 
column (Waters Corp.) using a 55-min gradient of 5 to 40% aceto-
nitrile with 0.1% formic acid at a flow rate of 400 nl/min with a 
column temperature of 55°C. Data collection on the Xevo TQ-XS 
mass spectrometer was performed in a targeted mode following 
method creation within Skyline (MacCoss Lab, University of Wash-
ington) with retention time scheduling set to 4 min around the 
average peak apex retention time from three SIL peptide alone ac-
quisitions. Average peak widths were set to 20 s with 12 points 
across the peak, the auto-dwell feature was enabled, and the 
optimal collision energy (CE) for each precursor was calculated ex-
perimentally from an SIL peptide alone analysis. To create the MRM 
assay within Skyline, both data-dependent acquisition (DDA) dis-
covery data (Q Exactive platform) and SIL alone peptide mixtures 
(100 fmol on column) were used. The method initially allowed for 
multiple charge states and up to five transitions per precursor. Op-
timization of the method, including retention time scheduling, pre-
cursor charge state selection, and selection of most robust 
transitions, was then performed on SIL mixture alone samples. Fol-
lowing optimization, the final method (including alcohol dehydro-
genase–spiked peptides and targeted endogenous human proteins) 
targeted 102 proteins, 183 peptides, 360 precursors, and 1114 indi-
vidual transitions. Each individual processing batch was saved as a 
separate Skyline file. Each peptide pair was manually verified for 
correct integration for each of the individual injections. All data 
were expressed as the area of light endogenous signal divided by 
the heavy SIL peptide signal for each peptide. All proteomic analy-
ses were conducted by investigators blinded to the clinical data and 
case status of the participants. 
Targeted LC-MRM assay reproducibility metrics and removal 
of peptide targets 
To assess the quality of each MRM assay, including analytical repro-
ducibility, and to identify potential targeted peptides below the limit 
of quantification (BLOQ) or peptides interfered with, the dot 
product of the transition ratios in the heavy channel compared to 
the transition ratios in the light channel was used. This filter is a 
strong indicator of interference in either the light or heavy 
channel. In each of those channels, the ratio among the three tran-
sitions within a peptide is measured. These ratios were then com-
pared between the light and heavy channels. Of the 177 peptides, 54 
had dot products of <90%. These peptides were removed from 
further analysis. From the remaining peptides, the data were simpli-
fied to only the ratio of the light channel to the heavy channel. From 
these data, the coefficient of variation (CV) for each peptide ratio 
was calculated across each run block of digestion QC injections. 
The average %CV of the SPQC samples ranged from 13.2 to 
17.5% for all blocks. The average %CV of the digestion QC 
samples ranged from 10.2 to 17.5%. 

Single-cell RNA sequencing 
To assess the potential for a joint tissue origin of the selected pep-
tides, we evaluated scRNA-seq gene expression data corresponding 
to the proteins of the essential peptides selected in the proteomic 
analysis. scRNA-seq data were generated from cartilage and 
matched synovium of three individuals with knee OA undergoing 
joint replacement surgery, as previously described (47) (dataset Na-
tional Center for Biotechnology Information Gene Expression 
Omnibus GSE152805). The scRNA-seq data were generated from 
11,579 chondrocytes from damaged sites of the medial tibiae 
(MT), 14,613 chondrocytes from intact sites of the outer lateral 
tibiae (OLT), and 10,640 synoviocytes. The relative gene expression 
data corresponding to the essential proteins are visualized in violin 
(density) plots that reflect the frequency of cells expressing each 
gene in the medial tibial (lesioned) cartilage (MT), the outer 
lateral tibial (nonlesioned) cartilage (OLT), and synovium. 

Statistical analysis 
Data processing and QCs 
Before statistical analyses, the technical validity of outlier values 
(quantity of the endogenous to SIL peptide) was reviewed and 
removed before statistical analysis if found to be invalid for techni-
cal reasons (for example, full spectrum not within the retention time 
window). The missing rate of returned data was computed for each 
peptide and individual; one individual was excluded due to a 
missing rate above 15% (15.9%). PC analysis using all peptides 
was performed to identify outlier samples; two samples located 
outside of the clusters in the pairwise PC plots were considered as 
outliers and were excluded. 

A total of 12 peptides were excluded because of SIL BLOQ. 
Serum samples were run in batches on different dates. To assess 
intra- and interplate variation of the targeted analytes and thereby 
identify batch effects, the SPQC sample was digested using the same 
protocol as the study samples and run multiple times (approximate-
ly every six samples). In total, four additional peptides (from serum 
amyloid P component, VTDB, complement component C9, and 
HPX) were excluded because of batch effects between plates. 
Thus, we proceeded with 107 peptides (64 proteins) for final 
analyses. 
Data imputation 
Assuming that peptide measures were missing at random, the 
missing values were imputed 10 times with random forest using 
the “missRanger” package (48) in R version 3.6.1. Following pub-
lished guidance (49, 50), we included all variables in the imputation 
scheme that we desired to study: 107 peptides and demographics of 
age, BMI, sex, and race. Results from the imputed datasets were 
combined to obtain 95% CIs and P values using Rubin’s rules 
(51, 52). 
Bootstrapped elastic net 
Elastic net is a regularization method that incorporates the L1 and L2 
coefficient norms used in Lasso and ridge regressions (53). In this 
way, similar to Lasso, elastic net encourages shrunken coefficients 
and sparsity in the model to reduce overfitting while also encourag-
ing grouped selection of variables (53). For each dataset and corre-
sponding outcome, the optimal elastic net tuning parameter α (α 
determines the mix of L1 and L2 penalties) was chosen. To assess 
the stabilities of selected biomarkers, 100 bootstrap samples were 
generated for each outcome contrast. That is, we used a grid of α 
from 0.1 to 0.9. For each α value and each bootstrap sample, 
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elastic net selection was performed, and the corresponding misclas-
sification rate was computed. Optimal α was determined on the 
basis of the smallest average misclassification rate across the 
penalty strengths of different α values. To calculate the stability of 
selected biomarkers, we created a “weighted frequency score” for the 
jth biomarker 

Fj ¼

Xn

i¼1

mi
σm

� �
†Iij

n 
where j for the jth biomarker, i = 1, …n for n bootstrap samples, mi 
for the misclassification rate of the ith bootstrap sample, and σm for 
the SD of n misclassficiation rates of n bootstrap samples; and Iij is 
an indicator variable indicating if the jth biomarker was selected in 
the ith bootstrap samples. For each outcome, the top 30 peptides 
with highest weighted frequency scores were chosen as candidate 
biomarkers; we refer to them as the stable biomarker set. 
Backward elimination 
Stable biomarker sets were further screened by backward elimina-
tion to create the essential sets of predictors. Here, we defined the 
AUC bias of a model as the difference between the AUC from the 
original samples and the average AUC of 1000 bootstrapped 
samples. The AUC bias was computed for the initial model with 
all stable peptides. A single stable peptide was eliminated consecu-
tively in each backward step with the AUC bias recomputed each 
time. Given the sample size, the final model was chosen on the 
basis of the following criteria: (i) AUC bias between bootstrap 
samples and original samples of <0.02; (ii) number of biomarkers 
of ≤20; and (iii) a rapid drop in bias after a peptide removal. We 
defined the peptides remaining in the final selected model as the 
essential biomarker set. 
Logistic regression models 
Logistic regression models for each progression outcome were per-
formed including: (i) baseline characteristics only (covariates); (ii) 
uCTXII only; (iii) uCTXIα only; (iv) uCTXII and the covariates; (v) 
essential (or stable) MRM biomarker set only; (vi) essential (or 
stable) MRM biomarker set and covariates; (vii) essential (or 
stable) MRM biomarker set and uCTXII; (viii) essential (or 
stable) MRM biomarker set and uCTXIα; and (ix) essential (or 
stable) MRM biomarker set, uCTXII, and the covariates. We also 
performed a sensitivity analysis, (x) with essential MRM biomarkers 
only excluding individuals with baseline K/L = 3 of the index knee. 
The baseline characteristics included age, sex, and selected clinical 
variables. To determine which clinical variables to include, we per-
formed univariate logistic regression on each clinical variable for a 
given outcome. Clinical variables meeting P < 0.15 from the univar-
iate analyses were selected (details in table S4). ORs and 95% CIs 
were estimated on the standardized biomarker data. These stan-
dardized estimates of ORs are comparable, as they represent the 
OR for 1 SD increase in a biomarker concentration. AUCs and 
95% CIs for each combination of variables for each model 
outcome were computed; Youden’s J statistic, sensitivity, and spe-
cificity were calculated. 

Ethics approvals 
The FNIH cohort is a subsample of the OAI that was conducted 
with ethics approval of the University of California, San Francisco 
(the coordinating site) and all sites participating in the OAI study. 

The BMF cohort data and samples were derived from studies con-
ducted with ethics approval of Duke University. All samples and 
data were obtained for research purposes, with informed consent 
of the study participants. 

Supplementary Materials 
This PDF file includes: 
Tables S1 to S6  

View/request a protocol for this paper from Bio-protocol. 
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