Brief overview of biomarkers: value, limitations, and the Biomarker Qualification Program (BQP)

Peter Stein, MD
Deputy Director
Office of New Drugs / CDER / FDA
Disclaimers

• Views expressed in this presentation are those of the speaker and do not necessarily represent an official FDA position

• I do not have any financial disclosures regarding pharmaceutical drug products
Overview

- Types of biomarkers – a brief review
- Surrogate endpoints – value and limitations
- Challenges of biomarker development
BEST Resource: Biomarkers, Endpoints, and Other Tools

- A glossary of terminology and uses of biomarkers and endpoints in basic biomedical research, medical product development, and clinical care
- Created by the NIH-FDA Biomarker Working Group
- BEST harmonizes terms and definitions and addresses nuances of usage and interpretation among various stakeholders, including:
 - Biomedical scientists
 - Translational and clinical researchers
 - Medical product developers
 - Patient/disease advocacy groups
 - Government officials
 - Clinicians
Biomarker: definition

“A defined characteristic that is measured as an indicator of normal biological processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic interventions. Molecular, histologic, radiographic, or physiologic characteristics are types of biomarkers.”
Why develop biomarkers?

• High quality biomarkers can markedly accelerate and enable drug development in areas of unmet need

• Biomarkers can improve trial efficiency and feasibility
 – Improve ease and accuracy of identifying patient population
 – Enrich the study population
 • Study population with more events – so detecting change in outcome with treatment becomes feasible
 • Study a more responsive study population to detect a drug effect
 – Improved monitoring
 • Enhanced patient safety – earlier detection of drug toxicity
 • Detect changes in patient status
 – Improve assessment of treatment response; predict clinical benefit

• Address unmet medical needs, where progress is halted or delayed by lack of adequate drug development tools, including biomarkers
BEST (Biomarkers, EndpointS, and other Tools)
Classification: Range of Biomarker Types

- Susceptibility / risk biomarker
- Diagnostic biomarker
- Prognostic biomarker
- Monitoring biomarker
- Predictive biomarker
- Pharmacodynamic/Response biomarker – including surrogate endpoints
- Safety biomarker

Measures of disease presence and status
Measure aspects of response to treatment
Disease-Focused Biomarkers

- **Non-disease population**
 - Susceptibility or risk predictor biomarkers
 - **Individuals at high risk of disease or pre-clinical disease population**
 - Diagnostic biomarker
 - Diagnostic biomarker
 - **Patients with disease**
 - Diagnostic biomarker
 - Disease Subtype 1
 - Disease Subtype 2
Disease-Focused Biomarkers

Non-disease population

- Susceptibility or risk predictor biomarkers
 - Individuals at high risk of disease or pre-clinical disease population

Diagnostic biomarker

- Non-disease population
- Patients with disease

Prognostic biomarker

- Patients with disease at higher risk of disease-related outcome(s)

Disease Subtype 1

- Diagnostic biomarker

Disease Subtype 2

- Diagnostic biomarker

- Prognostic biomarker
Disease-Focused Biomarkers

Non-disease population

Susceptibility or risk predictor biomarkers

Individuals at high risk of disease or pre-clinical disease population

Diagnostic biomarker

Diagnostic biomarker

Patients with disease

Diagnostic biomarker

Disease Subtype 1

Diagnostic biomarker

Prognostic biomarker

Disease Subtype 2

Prognostic biomarker

Patients with disease at higher risk of disease-related outcome(s)

Diagnostic biomarker

Disease-related outcome(s)
Disease-Focused Biomarkers

- **Non-disease population**
 - Susceptibility or risk predictor biomarkers
 - Individuals at high risk of disease or pre-clinical disease population

- **Diagnostic biomarker**
 - Patients with disease
 - Disease Subtype 1
 - Disease Subtype 2

- **Prognostic biomarker**
 - Patients with disease at higher risk of disease-related outcome(s)

- **Monitoring biomarker**
 - Assess disease status

- **Diagnostic biomarker**
 - Disease-related outcome(s)
BEST (Biomarkers, EndpointS, and other Tools)

Classification: Disease Focused Biomarkers

- **Susceptibility / risk biomarker:**
 - **Examples:** BMI or 2 hr post-meal glucose for diabetes risk, Apo E genotype risk for Alzheimer’s disease
 - **Key uses:** Define population for more efficient prevention trials

- **Diagnostic biomarker:**
 - **Examples:** Blood pressure in hypertension, FEV1 for COPD
 - **Key uses:** Define disease population for study

- **Monitoring biomarker:**
 - **Examples:** HCV-RNA, PSA in prostate cancer
 - **Key uses:** Monitor patient status in trials

- **Prognostic biomarker:**
 - **Examples:** Gleason score in prostate cancer, Total kidney volume in AD-PCKD
 - **Key uses:** Define higher risk disease population, enhancing trial efficiency
Treatment-Related Biomarkers

Patients with disease

Predictive biomarker

Responder or higher responder population

Lower or non-responder population
Patients with disease

Predictive biomarker

Responder or higher responder population

Lower or non-responder population

Phase 1, 2a (early stage biomarkers)

- **Target engagement biomarker**
 - Drug is hitting target

- **Pharmacodynamic biomarker**
 - Relevant pathway is modulated

Drug Treatment

Pharmacodynamic/Response Biomarkers

Proof of Pharmacology

Proof of Concept
Patients with disease

Predictive biomarker

Responder or higher responder population

Lower or non-responder population

Drug Treatment

Phase 1, 2a (early stage biomarkers)
- Target engagement biomarker
- Pharmacodynamic biomarker
- Intermediate clinical endpoint

Phase 2b, 3 (later stage biomarkers)
- Reasonably likely surrogate endpoint
- Validated surrogate endpoint
- Earlier change in definitive endpoint (Accel Approval, AA)

Pharmacodynamic/Response Biomarkers
- Proof of Pharmacology
- Proof of Concept

Surrogate Endpoints

Clinical Outcomes
- Disease morbidity / mortality ("survives")
- Clinical benefit ("feels or functions")

Responder or higher responder population

Pharmacodynamic biomarker

Drug is hitting target

Relevant pathway is modulated

Validated surrogate endpoint

Endpoint predicting outcome or clinical benefit (Full Approval)

Reasonably likely surrogate endpoint

Endpoint likely to predict outcome or clinical benefit (AA)

Intermediate clinical endpoint

Earlier change in definitive endpoint (Accel Approval, AA)
Patients with disease

Predictive biomarker

Responder or higher responder population

Lower or non-responder population

Disease morbidity / mortality ("survives")

Clinical benefit ("feels or functions")

Phase 1, 2a (early stage biomarkers)

Target engagement biomarker

Drug is hitting target

Pharmacodynamic biomarker

Relevant pathway is modulated

Pharmacodynamic/Response Biomarkers

Proof of Pharmacology
Proof of Concept

Surrogate Endpoints

Phase 2b, 3 (later stage biomarkers)

Reasonably likely surrogate endpoint

Endpoint likely to predict outcome or clinical benefit (AA)

Validated surrogate endpoint

Endpoint predicting outcome or clinical benefit (Full Approval)

Intermediate clinical endpoint

Earlier change in definitive endpoint (accelerated approval)

Drug Treatment

Safety biomarkers: assess treatment-related toxicity

Drug Treatment

Responder or higher responder population

Clinical Outcomes

Proof of Pharmacology
Proof of Concept

Surrogate Endpoints
BEST (Biomarkers, Endpoints, and other Tools)
Classification: Treatment-focused biomarkers

- **Predictive biomarker:**
 - **Examples:**
 - Cystic fibrosis genotypes response to ivacaftor
 - Microsatellite-high predicts response to pembrolizumab
 - **Key uses:**
 - Trial enrichment – improves efficiency, reduces sample size, increases response to treatment

- **Pharmacodynamic/Response biomarker:**
 - **Examples:**
 - Blood pressure in hypertension
 - FEV1 or 6 minute walk test
 - LDL-C
 - **Key uses:**
 - Demonstrating drug-target engagement, dose-ranging
 - Surrogate endpoints (validated or reasonably-likely)

- **Safety biomarker:**
 - **Examples:**
 - ALT, creatinine / eGFR
 - Urinary kidney injury biomarkers (KIM-1, etc.)
 - **Key uses:**
 - Detecting / assessing drug toxicity
To support approval, FDA expects substantial evidence of effectiveness – that shows that a drug improves meaningful clinical outcomes: how a patient *feels, functions, or survives*

- **A validated surrogate endpoint**: accepted by FDA that the effect on the biomarker *predicts* a specific clinical outcome. Validated endpoints have strong and diverse evidence supporting the relationship of the BM and the outcome.

- **A “reasonably likely” surrogate endpoint**: an endpoint supported by strong mechanistic and/or epidemiologic rationale such that an effect on the surrogate endpoint is *expected* to be correlated with a clinical benefit, but not yet reaching the standard for validation.
Types of Surrogate Endpoints

Causal Biomarker

Pathway or mediator biomarker

Organ injury biomarker

Clinical function

Reflecting causal factor

In pathway of disease: mediator of damage

Sites of Injury

Organ 1
Organ 2
Organ 3

Reflecting organ injury

Clinical Functional Measures

Event or functional loss

Clinical Events

- Genetic or genetic-related defective function (e.g., gene variant, decreased enzyme level or function)
- Environmental exposure (e.g., blood lead level, etc.)
- Microbiologic (e.g., HIV, HCV, bacterial culture, AFB smear)
The limitations of surrogate endpoints

• Not a direct measure of how a patient feels, functions or survives

• Intended to reflect and predict clinical benefit not measure the outcome

• With a surrogate endpoint, the benefit / risk assessment therefore must be based upon assumptions / predictions of benefit

 – Translating the extent of clinical benefit from an indirect measure, and also using a limited dataset on risk to assess harms

 – Challenging when a drug shows clear effects on a surrogate endpoint – but also has safety issues

• And biomarkers may fail to predict clinical benefit
The limitations of surrogate endpoints

Surrogate on **causal pathway** modulated by drug

Surrogate **not on causal pathway** by which drug leads to benefit, or **multiple pathways of leading to clinical outcome**, BM **may or may not** reflect key pathways

Drug may induce **adverse effects on desired clinical outcome** through a pathway **not reflected** by BM, or may lead to other toxicities = BM does not reflect benefit (or risk)

After Fleming Statistics in Medicine 2012
Biomarker integration into drug development: 3 pathways

- **IND pathway**: based upon agreement with the division, in the context of a specific drug development program

- **Scientific community consensus**: broadly/widely used biomarker, appropriate scientific support, generally accepted by experts in the field

- **Biomarker qualification program**: review and acceptance based upon appropriate submission qualification package; available for use in any development program within approved context of use
The challenges of biomarker development

• Many disease areas with unmet needs have insufficient drug development tools to maximize trial efficiency (or even feasibility)

• Biomarker development is a long and resource-intensive task
 – Biomarker discovery: biased or unbiased screening in animal, clinical, epidemiological (include RWE)
 – Early animal translational models
 – Clinical or epidemiology observational studies
 – Analytic validation efforts: assure accuracy / reproducibility of measure
 – Interventional studies with “gold standard” endpoints compared to candidate – with multiple different treatments (different MOAs) to show that BM works across drug classes

• Many stakeholders in the mix:
 – Academic investigators at multiple institutions, US and ex-US
 – Often several academic societies in disease area with different viewpoints and membership
 – Different companies – both drug and device-focused may be working in the area
 – May be different patient stakeholder organizations

• The challenge: how to prioritize biomarker needs, focus resources, and integrate efforts across stakeholders
Conceptual Framework for Biomarker Development for Regulatory Acceptance

What is the “gap” in drug development this BM can fill? What are currently available tools and their limitations?

What is the intended use of the BM – for what purpose (“BEST” class), in what population and setting?

What is the expected value of the biomarker – how does it address unmet needs?
• Need for this tool and unmet need for treatment in target disease?
• How important is the impact of the BM?

What is the consequence if the biomarker is inaccurate?
• Used in conjunction with other endpoints or replacing other endpoints?
• Intended COU (e.g., enrichment vs a surrogate)?

What is the evidence supporting the biomarkers proposed COU?
• Where does the BM fit in the causal pathway?
• What is the biological rationale?
• What clinical data supports the relationship between the change in the BM and the clinical outcome?
• What are the analytic characteristics of the BM?

Drug development tool qualification at CDER

- **Qualification** is a conclusion that within the stated *context of use*, the DDT *can be relied* upon to have a specific interpretation and application in drug development and *regulatory review*.

- **Types of Tools:**

 - Potential for wide applicability to support drug development programs:
 - **Clinical Outcome Assessments**
 - **Biomarkers**

 - Usually in narrow context of use (biological, radiological threats):
 - **Animal Models**
 - *(Animal Rule)*
21st Century Cures: Qualification of Drug Development Tools (Section 3011) - BQP

• Specifies the drug development tool qualification process, 3 stages
 – Submission of LOI
 – Submission of qualification plan
 – Submission of full qualification package
• FDA can accept or reject at each stage
• Time frames for each review step to be specified
21st CC: acceptance of biomarker into the BQP

• Acceptance of each stage submission based upon scientific merit

• Prioritization of review
 – Based upon
 • “the severity, rarity, or prevalence of the disease or condition targeted by the drug development tool and the availability or lack of alternative treatments for such disease or condition; and
 • the identification by the Secretary or by biomedical research consortia and other expert stakeholders, of such drug development tool and its proposed context of use as a public health priority” (italics added)

• Effect of qualification: use of a qualified DDT “by any person” in:
 – Supporting or obtaining approval or licensure of a drug or biological product (under Section 505 of the FDC Act, or Section 351 of the PHS Act), or
 – Supporting the investigational use of a drug or biological product

• Recision or modification of qualification determination
 – Based upon new information that alters conclusions that supported qualification determination
21st CC: additional features of the BQP

• **Transparency**
 – Specifies providing information about each submission (stage, date of update, information about submission, formal written determinations, and reviews, etc.)
 – Supports a public, transparent process in DDT development – so that all interested parties know what tools are in development, stage of development, and FDA determinations (as appropriate)

• **Guidances** on DDTs to be issued – that “provides a conceptual framework describing the appropriate standards and scientific approaches to support the development of biomarkers delineated under the taxonomy established...” (within 3 years)

• A **taxonomy** of biomarkers to be established, in collaboration with biomedical research consortia and other interested parties through a public process, for use in drug development
Critical path innovation meetings (CPIM)

• A forum for an interactive discussion between FDA and outside organizations (including industry, academic or patient organizations) on specific drug development topics

• Discussion of the science, medicine, and regulatory aspects of innovation in drug development

• Intent is an forum for scientific communication – not to obtain regulatory advice (“non-binding” input)

• Not a meeting about a specific approval pathway

• Wide scope: biomarkers, COAs, natural history studies, technologies (not manufacturing), and clinical trial designs and methods

BEST (Biomarkers, Endpoints, and other Tools)

Classification: *Disease Focused Biomarkers*

- **Susceptibility / risk biomarker:** indicates the individual’s potential for *developing* a disease or medical condition
- **Diagnostic biomarker:** used to detect or confirm presence of a disease or condition of interest or to identify individuals with a *subtype* of the disease
- **Prognostic biomarker:** used to identify likelihood of a clinical event, disease recurrence or progression in patients who have the disease or medical condition of interest
- **Monitoring biomarker:** measured serially for assessing status of a disease or medical condition or for evidence of *exposure* to (or effect of) a medical product or an environmental agent
Classification: *Treatment-focused biomarkers*

- **Predictive biomarker:** to identify individuals more likely to experience a favorable or unfavorable effect from exposure to a medical product or an environmental agent.

- **Pharmacodynamic/Response biomarker:** to show that a biological response has occurred in an individual who has been exposed to a medical product or an environmental agent. (A1C, LDL-C, BP)

- **Safety biomarker:** measured before or after an exposure to a medical product or an environmental agent to indicate the likelihood, presence, or extent of toxicity as an adverse effect. (ALT, eGFR, troponin)